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A class of dispersion relations for quadratic response is discussed. An experimental verification of these 
relations for magnetic systems is suggested. In a typical experiment there are two parallel high-frequency 
magnetic fields, perpendicular to a constant field. The response in the direction of the constant field has five 
components, corresponding with the sum and the difference of the frequencies of the perturbing fields, twice 
these frequencies, and frequency zero. The dispersion relations are integral relations for the corresponding 
susceptibilities. In a final section an integral relation connecting the second-order response with a component 
of the linear susceptibility tensor is formulated. 

INTRODUCTION 

RECENTLY, the theory of nonlinear response has 
been developed in some detail1"4 Whereas the 

interest of most authors has been in the field of nonlinear 
optics, we discuss some properties that may find experi
mental verification for magnetic systems. In a typical 
experiment there are two parallel high-frequency mag
netic fields of different frequencies. Perpendicular to 
these fields there is a constant magnetic field in the 

direction of which the response at the sum and difference 
frequency is measured. These responses obey a disper
sion relation, which is discussed below, together, with an 
integral relation that connects the responses with the 
linear susceptibility tensor. 

If there is a set of perturbing "fields" or "forces" 
hp(t)=hpcos(a)pt±(pp), p=l, 2, * •, acting on the 
variables ixp of a quantum mechanical system, the ^th-
order reponse of variable k is given by 
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The fields of forces are, for instance, components of 
electric or magnetic fields and the variables fxp the 
components of the corresponding moments. This result 
follows directly from formula (16) of Butcher and 
McLean.3 In Eq. (1), p0 and JUP(/) are the density matrix 
for the unperturbed state and the corresponding Heisen-
berg operators for the variables of the system. We should 
like to remark that the convergence of (1) for different 
n is a theoretically necessary condition for the existence 
of a nonzero steady-state response. For a finite system 
without heat contact with its surroundings, part of the 
response for n=3, 4, • • • will be infinitely large as a con
sequence of the heating up of the system. For instance, 
the response at cop, proportional to hp

z, will diverge, 
whereas the third-order term of frequency 3c*>-p is 
convergent. 

For finite isolated systems, not being perturbed in any 
way by other systems, one could insert proper con
vergence factors in the integrals (1), in order to make 
them finite. In our case, however, we suppose that there 
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is always a heat contact between the proper system, sub
ject to the perturbation of the oscillating fields, and its 
surroundings. The sign Tr includes in this case an 
averaging for the variables of these surroundings. The 
integrand in (1) will be a well-behaved function of the 
variables n , T2, • • •, and the corresponding integrals 
will converge. 

NONLINEAR SUSCEPTIBILITIES 

Now we specialize for the case of two perturbing fields 
hi(t) and hj(t) with frequencies o>*, c*>j>0. Except when 
otherwise stated, all our frequencies are supposed to be 
positive quantities. The second-order response (fa)2 now 
has five Fourier components. For o)i>o)j the correspond
ing frequencies are m+ooj, m—ooj, 2m, 2a>y, and 0 and we 
have 

+ReX-&(#)(cot-,ov) expi£(a)i—a)j)t+:<pi— <pj]}hihj 

+ReX+Hm(o)t) exp[i2(wit+<pi)2hi2 

+Rex**m (o>y) expp2 («y/+ $>/)]*/ 

+Xrhm((adkt+X-kai)fa)k?. (2) 

The susceptibilities X±k(ij) may be expressed in terms of 
one function X*(#) defined for positive as well as 
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negative frequencies: 

x ± * W ) ( « » w ) = Xfc(t/)(cot-, ± toy) , 

Xfc(;y)(cO;,COy) 
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I t will be clear that for coy>co; we have 

X^Ui)(«y,«») = Xfc(/o(«y, d=«<) = Xh(ij)(db«*, coy). 

The quadratic terms in (2) correspond with suscepti
bilities of the form 
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DISPERSION RELATIONS 

As follows from (3) we may write Xfc(iy)(coi-,coy) in the 
form 
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These formulas express the real parts of X+ and X~ in 
terms of the imaginary parts of these functions and vice 
versa. The real parts give the "in-phase" parts of the 
signals, going with cos[(co;±coy)^+ <Pi± <PL\- The "out-of-
phase" parts are given by ImX±sin[(co»=t:a>y)^+^z±v?y]. 
A third equation can be found by interchanging i and j 
in the second of these formulas. 

A simpler dispersion relation exists for X+
fc(;y)(co;,coy), 

jf the two frequencies co* and coy, have a fixed ratio 

co=coH-coy, CO;=G:CO, coy=j&o, a + / 3 = 1, 

a, j(3>0, a and jS constant. 

We now have a relation identical in form with the well-
known dispersion relation for linear responses, which 
connects real and imaginary parts of the susceptibility 
in the following way 

If F((T,O)J) obeys some very general conditions, it is clear 
that we can write down the usual Kramers-Kronig or 
dispersion relations for Xfc(;y)(coi,coy) as a function of co;5: 
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I t is supposed without further proof that, in the case we 
are interested in, Xh{ij) = 0 for the limit of one or both of 
the variables going to infinity. 

Formula (5) has already been given by Price,4 but he 
did not pay attention to its interpretation in terms of 
X+fc(iy), x~Hijh and x~fc(y»). This interpretation leads to 
a system of three integral equations, two of which are 

Quite analogous in form with (7) are dispersion relations 
for the double frequency responses at 2co; and 2coy; it 
does not seem necessary to write them down explicitly in 
order to show this analogy. For the responses at | co;—coy | 
and 0, no such relations exist. Price4 gives still another 
dispersion relation for the variable co;+coy when co;—coy 
has a fixed value. A general set of dispersion relations 
can be found by introducing the variables 

coi = 7corf 5coy, 

C02= — 5c0;+7C0y 
7, 5 > 0 , 7 2 + 5 2 = l . 

5 A. Abragam, The Principles of Nuclear Magnetism (Clarendon 
Press, Oxford, 1961), p. 93. 

From (3) it follows that dispersion relations exist for 
X(coi,co2) = Xfc(;y)[coi(coi,co2),coy(coi,co2)] as a function of coi, 
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for a fixed value of o>2. All dispersion relations discussed 
so far are special cases of this general one. 

A difficulty in the experimental verification of (6) 
arises from the fact that, in general, one does not know 
the phases of the signals at sum and difference fre
quency. The "in-phase" and "out-of-phase" parts of 
the signals, going with cos[(co^±coy)/+^db^] and 
sin[(co;±coj)/+<pidb<py], respectively, are not related 
with two different physical phenomena like dispersion 
and absorption, as is the case for first-order responses. 
The X±

fc(^) may be determined by measuring induced 
currents in a coil, which currents are compensated by 
signals of the same frequencies and given phase. In the 
experiment suggested in the first paragraph, the phases 
of the induced currents are known theoretically for an 
infinitely large constant field: X^*,-) are real for this 
case. 

We denote the direction of the high-frequency fields 
by x and that of the constant field H by z. The suscepti
bilities now are represented by X±

z<tXX)(ui,a)j). If the 
magnetic system is composed of spins 1/2, the limiting 
values of X±

z^xx) for H —> <*> and T —> <*> (the usual 
high-temperature approximation) are given by 

, x (& o)3 gPoH 
X±

z (xx) (o)i,o)j) ~ N, o)H = , (8) 
$kTfia>H fi 

except for the coidzcoy^Tgf"1, rsi being the spin-lattice 
relaxation time. In (8), po is the Bohr magneton and N 
the number of spins. The special value 5 = 1 / 2 is only 
an example. For other values of S we find similar results, 
that is, X± real and positive for H —> <x>. I t is possible, in 
principle, to make compensating signals with the phase 
of the response for H —>oo, for a given set of frequencies 
o)i and o)j. These signals may be used to determine 
phases and amplitudes of the responses at «*£«/ for 
other values of H. 

INTEGRAL PROPERTY 

We finally give a relation between the susceptibilities 
X±

Z(XX) and the cross term Xy(x) of the first-order 
susceptibility tensor. This relation is based on the 
integral property 
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which is a special case of the inversion of a Fourier 
cosine transformation. From (3) and (9) we derive 
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which relation may be put into the form 
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This is an example of a general type of relations that 
exist between responses of ^th and (n— l ) th orders, if 
we have a magnetic moment that obeys the commuta
tion relation 

which is correct within a given manifold, characterized 
by an isotropic g tensor. This g tensor may connect the 
magnetic moment of the individual ions with the corre
sponding total angular momentum, if we have a 
(degenerate) eigenstate for this angular momentum. 
Another case is given by a low-lying group of energy 
levels of a paramagnetic ion corresponding with a given 
value of the real or ficititious spin. In this case the 
g tensor connects the magnetic moment with this spin. 
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